The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define additional types. Future versions of Python may add types to the type hierarchy (e.g. rational or complex numbers, efficiently stored arrays of integers, etc.). datatype typehierarchy extensionmodule Some of the type descriptions below contain a paragraph listing `special attributes'. These are attributes that provide access to the implementation and are not intended for general use. Their definition may change in the future. There are also some `generic' special attributes, not listed with the individual objects: __methods__ is a list of the method names of a built-in object, if it has any; __members__ is a list of the data attribute names of a built-in object, if it has any. specialattribute genericspecialattribute __methods__ __members__
None
This type has a single value. There is a single object with this value. This object is accessed through the built-in name None. It is returned from functions that don't explicitly return an object. None None@None
Numbers
These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in computers. number numeric Python distinguishes between integers and floating point numbers:
Integers
These represent elements from the mathematical set of whole numbers. integer There are two types of integers:
Plain integers
These represent numbers in the range -231 through 231 - 1. (The range may be larger on machines with a larger natural word size, but not smaller.) When the result of an operation falls outside this range, the exception OverflowError is raised. For the purpose of shift and mask operations, integers are assumed to have a binary, 2's complement notation using 32 or more bits, and hiding no bits from the user (i.e., all 232 different bit patterns correspond to different values). plain integer
Long integers
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2's complement which gives the illusion of an infinite string of sign bits extending to the left. long integer